آفاق (دانلود فایل های دانشگاهی)

کد تخفیف 15 درصدی ویژه اعضای محترم کانال تلگرامی فعال شد. دوستان محترم می توانند به هنگام خرید از تخفیف مربوطه استفاده نمایند.

نظرسنجی سایت

دانشجوی کدام دانشگاه هستید و جزوات کدام سطح تحصیلی مورد نیاز شما می باشد.

اشتراک در خبرنامه

جهت عضویت در خبرنامه لطفا ایمیل خود را ثبت نمائید

Captcha

آمار بازدید

  • بازدید امروز : 568
  • بازدید دیروز : 1278
  • بازدید کل : 615331

پیوند ها

کتاب Applied Spatial Statistics for Public Health Data


کتاب Applied Spatial Statistics for Public Health Data

به تعداد 518 صفحه pdf

 

LANCE A. WALLER
Emory University
Department of Biostatistics
Atlanta, Georgia
CAROL A. GOTWAY
National Center for Environmental Health
Centers for Disease Control and Prevention
Atlanta, Georgia
A

 

Statistics, too, have supplied us with a new and powerful
means of testing medical truth. . . .
Dr. Benjamin Babbinton
President of the London Epidemiological Society, 1850
Lancet, Volume 2, p. 641
Dedicated with love to
Dr. Alisha A. Waller
Allyn, Matthew, and Adrian Waller
Dr. Clement A. and Mrs. Patricia L. Gotway

 

Contents
Preface xv
Acknowledgments xvii
1 Introduction 1
1.1 Why Spatial Data in Public Health? 1
1.2 Why Statistical Methods for Spatial Data? 2
1.3 Intersection of Three Fields of Study, 3
1.4 Organization of the Book, 5
2 Analyzing Public Health Data 7
2.1 Observational vs. Experimental Data, 7
2.2 Risk and Rates, 8
2.2.1 Incidence and Prevalence, 8
2.2.2 Risk, 9
2.2.3 Estimating Risk: Rates and Proportions, 9
2.2.4 Relative and Attributable Risks, 10
2.3 Making Rates Comparable: Standardized Rates, 11
2.3.1 Direct Standardization, 13
2.3.2 Indirect Standardization, 14
2.3.3 Direct or Indirect? 15
2.3.4 Standardizing to What Standard? 17
2.3.5 Cautions with Standardized Rates, 18
2.4 Basic Epidemiological Study Designs, 18
2.4.1 Prospective Cohort Studies, 19
2.4.2 Retrospective Case–Control Studies, 19
2.4.3 Other Types of Epidemiological Studies, 20
vii
viii CONTENTS
2.5 Basic Analytic Tool: The Odds Ratio, 20
2.6 Modeling Counts and Rates, 22
2.6.1 Generalized Linear Models, 23
2.6.2 Logistic Regression, 24
2.6.3 Poisson Regression, 25
2.7 Challenges in the Analysis of Observational Data, 26
2.7.1 Bias, 26
2.7.2 Confounding, 27
2.7.3 Effect Modification, 29
2.7.4 Ecological Inference and the Ecological Fallacy, 29
2.8 Additional Topics and Further Reading, 31
2.9 Exercises, 32
3 Spatial Data 38
3.1 Components of Spatial Data, 38
3.2 An Odyssey into Geodesy, 40
3.2.1 Measuring Location: Geographical Coordinates, 40
3.2.2 Flattening the Globe: Map Projections and Coordinate
Systems, 42
3.2.3 Mathematics of Location: Vector and Polygon
Geometry, 47
3.3 Sources of Spatial Data, 51
3.3.1 Health Data, 51
3.3.2 Census-Related Data, 55
3.3.3 Geocoding, 56
3.3.4 Digital Cartographic Data, 56
3.3.5 Environmental and Natural Resource Data, 56
3.3.6 Remotely Sensed Data, 59
3.3.7 Digitizing, 59
3.3.8 Collect Your Own! 59
3.4 Geographic Information Systems, 60
3.4.1 Vector and Raster GISs, 61
3.4.2 Basic GIS Operations, 62
3.4.3 Spatial Analysis within GIS, 63
3.5 Problems with Spatial Data and GIS, 64
3.5.1 Inaccurate and Incomplete Databases, 64
3.5.2 Confidentiality, 65
3.5.3 Use of ZIP Codes, 65
3.5.4 Geocoding Issues, 66
3.5.5 Location Uncertainty, 66
CONTENTS ix
4 Visualizing Spatial Data 68
4.1 Cartography: The Art and Science of Mapmaking, 69
4.2 Types of Statistical Maps, 70
MAP STUDY: Very Low Birth Weights in Georgia Health Care
District 9, 70
4.2.1 Maps for Point Features, 72
4.2.2 Maps for Areal Features, 77
4.3 Symbolization, 84
4.3.1 Map Generalization, 84
4.3.2 Visual Variables, 84
4.3.3 Color, 85
4.4 Mapping Smoothed Rates and Probabilities, 86
4.4.1 Locally Weighted Averages, 87
4.4.2 Nonparametric Regression, 89
4.4.3 Empirical Bayes Smoothing, 90
4.4.4 Probability Mapping, 95
4.4.5 Practical Notes and Recommendations, 96
CASE STUDY: Smoothing New York Leukemia Data, 98
4.5 Modifiable Areal Unit Problem, 104
4.6 Additional Topics and Further Reading, 108
4.6.1 Visualization, 109
4.6.2 Additional Types of Maps, 109
4.6.3 Exploratory Spatial Data Analysis, 112
4.6.4 Other Smoothing Approaches, 113
4.6.5 Edge Effects, 115
4.7 Exercises, 116
5 Analysis of Spatial Point Patterns 118
5.1 Types of Patterns, 118
5.2 Spatial Point Processes, 122
5.2.1 Stationarity and Isotropy, 123
5.2.2 Spatial Poisson Processes and CSR, 123
5.2.3 Hypothesis Tests of CSR via Monte Carlo Methods, 125
5.2.4 Heterogeneous Poisson Processes, 126
5.2.5 Estimating Intensity Functions, 130
DATA BREAK: Early Medieval Grave Sites, 134
5.3 K Function, 137
5.3.1 Estimating the K Function, 138
5.3.2 Diagnostic Plots Based on the K Function, 138
x CONTENTS
5.3.3 Monte Carlo Assessments of CSR Based on the
K Function, 139
DATA BREAK: Early Medieval Grave Sites, 141
5.3.4 Roles of First- and Second-Order Properties, 146
5.4 Other Spatial Point Processes, 147
5.4.1 Poisson Cluster Processes, 147
5.4.2 Contagion/Inhibition Processes, 149
5.4.3 Cox Processes, 149
5.4.4 Distinguishing Processes, 150
5.5 Additional Topics and Further Reading, 151
5.6 Exercises, 151
6 Spatial Clusters of Health Events: Point Data for Cases
and Controls 155
6.1 What Do We Have? Data Types and Related Issues, 156
6.2 What Do We Want? Null and Alternative Hypotheses, 157
6.3 Categorization of Methods, 162
6.4 Comparing Point Process Summaries, 162
6.4.1 Goals, 162
6.4.2 Assumptions and Typical Output, 163
6.4.3 Method: Ratio of Kernel Intensity Estimates, 164
DATA BREAK: Early Medieval Grave Sites, 167
6.4.4 Method: Difference between K Functions, 171
DATA BREAK: Early Medieval Grave Sites, 173
6.5 Scanning Local Rates, 174
6.5.1 Goals, 174
6.5.2 Assumptions and Typical Output, 174
6.5.3 Method: Geographical Analysis Machine, 175
6.5.4 Method: Overlapping Local Case Proportions, 176
DATA BREAK: Early Medieval Grave Sites, 177
6.5.5 Method: Spatial Scan Statistics, 181
DATA BREAK: Early Medieval Grave Sites, 183
6.6 Nearest-Neighbor Statistics, 183
6.6.1 Goals, 183
6.6.2 Assumptions and Typical Output, 183
6.6.3 Method: q Nearest Neighbors of Cases, 184
CASE STUDY: San Diego Asthma, 188
6.7 Further Reading, 198
6.8 Exercises, 198
CONTENTS xi
7 Spatial Clustering of Health Events: Regional Count Data 200
7.1 What Do We Have and What Do We Want? 200
7.1.1 Data Structure, 201
7.1.2 Null Hypotheses, 202
7.1.3 Alternative Hypotheses, 203
7.2 Categorization of Methods, 205
7.3 Scanning Local Rates, 205
7.3.1 Goals, 205
7.3.2 Assumptions, 206
7.3.3 Method: Overlapping Local Rates, 206
DATA BREAK: New York Leukemia Data, 207
7.3.4 Method: Turnbull et al.’s CEPP, 209
7.3.5 Method: Besag and Newell Approach, 214
7.3.6 Method: Spatial Scan Statistics, 219
7.4 Global Indexes of Spatial Autocorrelation, 223
7.4.1 Goals, 223
7.4.2 Assumptions and Typical Output, 223
7.4.3 Method: Moran’s I , 227
7.4.4 Method: Geary’s c, 234
7.5 Local Indicators of Spatial Association, 236
7.5.1 Goals, 237
7.5.2 Assumptions and Typical Output, 237
7.5.3 Method: Local Moran’s I , 239
7.6 Goodness-of-Fit Statistics, 242
7.6.1 Goals, 242
7.6.2 Assumptions and Typical Output, 243
7.6.3 Method: Pearson’s χ2, 243
7.6.4 Method: Tango’s Index, 244
7.6.5 Method: Focused Score Tests of Trend, 251
7.7 Statistical Power and Related Considerations, 259
7.7.1 Power Depends on the Alternative Hypothesis, 259
7.7.2 Power Depends on the Data Structure, 260
7.7.3 Theoretical Assessment of Power, 260
7.7.4 Monte Carlo Assessment of Power, 261
7.7.5 Benchmark Data and Conditional Power Assessments, 262
7.8 Additional Topics and Further Reading, 264
7.8.1 Related Research Regarding Indexes of Spatial Association,
264
xii CONTENTS
7.8.2 Additional Approaches for Detecting Clusters and/or Clustering,
264
7.8.3 Space–Time Clustering and Disease Surveillance, 266
7.9 Exercises, 266
8 Spatial Exposure Data 272
8.1 Random Fields and Stationarity, 273
8.2 Semivariograms, 274
8.2.1 Relationship to Covariance Function and Correlogram,
276
8.2.2 Parametric Isotropic Semivariogram Models, 277
8.2.3 Estimating the Semivariogram, 280
DATA BREAK: Smoky Mountain pH Data, 282
8.2.4 Fitting Semivariogram Models, 284
8.2.5 Anisotropic Semivariogram Modeling, 291
8.3 Interpolation and Spatial Prediction, 299
8.3.1 Inverse-Distance Interpolation, 300
8.3.2 Kriging, 301
CASE STUDY: Hazardous Waste Site Remediation, 313
8.4 Additional Topics and Further Reading, 318
8.4.1 Erratic Experimental Semivariograms, 318
8.4.2 Sampling Distribution of the Classical Semivariogram Estimator,
319
8.4.3 Nonparametric Semivariogram Models, 319
8.4.4 Kriging Non-Gaussian Data, 320
8.4.5 Geostatistical Simulation, 320
8.4.6 Use of Non-Euclidean Distances in Geostatistics, 321
8.4.7 Spatial Sampling and Network Design, 322
8.5 Exercises, 323
9 Linking Spatial Exposure Data to Health Events 325
9.1 Linear Regression Models for Independent Data, 326
9.1.1 Estimation and Inference, 327
9.1.2 Interpretation and Use with Spatial Data, 330
DATA BREAK: Raccoon Rabies in Connecticut, 330
9.2 Linear Regression Models for Spatially Autocorrelated Data, 333
9.2.1 Estimation and Inference, 334
9.2.2 Interpretation and Use with Spatial Data, 340
CONTENTS xiii
9.2.3 Predicting New Observations: Universal Kriging, 341
DATA BREAK: New York Leukemia Data, 345
9.3 Spatial Autoregressive Models, 362
9.3.1 Simultaneous Autoregressive Models, 363
9.3.2 Conditional Autoregressive Models, 370
9.3.3 Concluding Remarks on Conditional Autoregressions, 374
9.3.4 Concluding Remarks on Spatial Autoregressions, 379
9.4 Generalized Linear Models, 380
9.4.1 Fixed Effects and the Marginal Specification, 380
9.4.2 Mixed Models and Conditional Specification, 383
9.4.3 Estimation in Spatial GLMs and GLMMs, 385
DATA BREAK: Modeling Lip Cancer Morbidity in Scotland, 392
9.4.4 Additional Considerations in Spatial GLMs, 399
CASE STUDY: Very Low Birth Weights in Georgia Health Care
District 9, 400
9.5 Bayesian Models for Disease Mapping, 409
9.5.1 Hierarchical Structure, 410
9.5.2 Estimation and Inference, 411
9.5.3 Interpretation and Use with Spatial Data, 420
9.6 Parting Thoughts, 429
9.7 Additional Topics and Further Reading, 430
9.7.1 General References, 430
9.7.2 Restricted Maximum Likelihood Estimation, 430
9.7.3 Residual Analysis with Spatially Correlated Error Terms,
431
9.7.4 Two-Parameter Autoregressive Models, 431
9.7.5 Non-Gaussian Spatial Autoregressive Models, 432
9.7.6 Classical/Bayesian GLMMs, 433
9.7.7 Prediction with GLMs, 433
9.7.8 Bayesian Hierarchical Models for Spatial Data, 433
9.8 Exercises, 434
References 444
Author Index 473
Subject Index 481


مبلغ واقعی 5,985 تومان    10% تخفیف    مبلغ قابل پرداخت 5,387 تومان

توجه: پس از خرید فایل، لینک دانلود بصورت خودکار در اختیار شما قرار می گیرد و همچنین لینک دانلود به ایمیل شما ارسال می شود. درصورت وجود مشکل می توانید از بخش تماس با ما ی همین فروشگاه اطلاع رسانی نمایید.

Captcha
پشتیبانی خرید

برای مشاهده ضمانت خرید روی آن کلیک نمایید

  انتشار : ۱۷ اسفند ۱۳۹۶               تعداد بازدید : 36

برچسب های مهم

دیدگاه های کاربران (0)

کسب درآمد از اینترنت روزی 1/5 میلیون تومان تضمینی

کسب درآمد از اینترنت روزی 1/5 میلیون تومان تضمینی

بسم الله الرحمن الرحیم*نکته مهم*لطفا قبل از اینکه به پشتیبانی پیام بدهید و سوال بپرسید ابتدا تمام توضیحات موجود در این صفحه را مطالعه کنید و سوالات متداول و دیدگاه های کاربران به همراه پاسخ های داده شده را با دقت بخوانید. چون اکثر سوالاتی که شما عزیزان از پشتیبانی میپرسید ...

کسب درآمد اینترنتی 300000 تومان در خانه در کمتر از 30

کسب درآمد اینترنتی 300000 تومان در خانه در کمتر از 30

این محصول آپدیت شد تاریخ 1397/01/27 بسم الله الرحمن الرحیم سلام در دنیای اینترنت خیلی از آدم ها هستند که دوست دارند کسب درآمد کنند و به خیلی چیزها و ایده ها فکر میکنند . همه ما دوست داریم در کمترین زمان بهترین درآمد را داشته باشیم مثلا یک فرد به طور میانگین اگر 12 ساعت کارکند و ...

ردیابی افراد بدون نیاز به نصب نرم افزار+ردیاب

ردیابی افراد بدون نیاز به نصب نرم افزار+ردیاب

معرفی نرم افزار: ردیابی افراد در تلگرام+شناسایی آدرس محل سکونت + شماره یاب این ردیاب کاملا قانونی و مطابق با قوانین جمهوری اسلامی ایران میباشد.و هیچ گونه هک کردن و یا رفتن به اطلاعات شخصی طرف در کار نبوده و تمام آموزشها مطابق با قوانین جمهوری اسلامی میباشد،و هیچ گونه ورود ...

کسب درامداز اینترنت ماهیانه 8میلیون تومان

کسب درامداز اینترنت ماهیانه 8میلیون تومان

پکیج کسب درآمداسان از اینترنت اپدیت جدید 15 اردیبهشت 1397 مناسب برای تمامی افرادباهرسن ودانشی این فرصت هرگز تکرار نمیشود عجله کنید تضمین100%بازگشت وجه درصورت عدم کسب این مبلغ هدیه ویژه پس از خرید این محصول: 1.نرم افزار کی به وای فای وصله نرم افزاری برای ...

کتاب چگونه هر شخصی را عاشق خود کنیم ( با تضمین

کتاب چگونه هر شخصی را عاشق خود کنیم ( با تضمین

کتاب چگونه هر شخصی را عاشق خود کنیم قبل از هر چیزی اجازه دهید به این نکته اشاره کنم که هنگام خرید کتاب چگونه هر شخصی را عاشق خود کنیم، دقت کنید شماره ی تماس مسئول و پشتیبان فروش درج شده باشد در غیر اینصورت آن خرید قابل اطمینان نیست. متاسفانه بعضی افراد با کپی تبلیغات کتاب ...

با هدف ارتقاء سطح علمی و ارائه ی خدمات آموزشی و اطلاع رسانی از آخرین و مهمترین اخبار دانشگاه در خدمت شما هستیم .

فید خبر خوان    نقشه سایت    تماس با ما